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A fourth-order compact finite difference scheme and a multigrid method are em-
ployed to solve the two-dimensional convection diffusion equations with boundary
layers. The computational domain is first discretized on a nonuniform (stretched)
grid to resolve the boundary layers. A grid transformation technique is used to map
the nonuniform grid to a uniform one. The fourth-order compact scheme is applied
to the transformed uniform grid. A multigrid method is used to solve the resulting
linear system. Numerical experiments are used to show that a graded mesh and a grid
transformation are necessary to compute high accuracy solutions for the convection
diffusion problems with boundary layers and dicretized by the fourth-order compact
scheme. (© 2001 Academic Press
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1. INTRODUCTION

Numerical simulation of the convection diffusion equation plays a very important ro
in computational fluid dynamics to simulate flow problems. A two-dimensional convectic
diffusion equation satisfying Dirichlet boundary conditions can be written in the form of

Uxx + Uyy + PX, YU +qX, YUy = F(X,y), (X, y) € Q,

1)
ux,y) = gx,y), (x,y) €.
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The convection coefficients(x, y) andq(x, y) are functions of the independent variables
x andy, and are assumed to be sufficiently smooth. Heis a convex domain consisting
of a union of rectangles, angk2 is the boundary of2. The magnitude ofp(x, y) and
q(x, y) may be referred to as the Reynolds number (Re), and it determines the ratio of
convection to diffusion. Numerical solutions of Eq. (1) based on iterative solution methc
become increasingly difficult (converge slowly or even diverge) as the ratio of the convect
to diffusion increases [35]. Traditional finite difference discretization schemes such
the second-order central difference scheme and the first-order upwind scheme hav
drawbacks of either lack of stability (central difference) or lack of accuracy (upwind). The
is considerable interest in developing improved finite difference discretization schemes
the convection diffusion equations[1, 11, 13, 14]. Recently, the class of higher order comj
discretization schemes with superconvergent properties has attracted much attentior
has been applied to the convection diffusion equations [5, 8, 9, 12, 23, 31].

In the various ways of differencing Eqg. (1), the most familiar schemes are the cen
difference scheme and the upwind difference scheme. These two schemes vyield a li
system with a five-point sparse matrix of the form

Au= f. )

In the case of the central difference scheme, classical iterative methods for solving
resulting linear system (2) do not converge when the convective terms dominate and w
the cell Reynolds number is greater than a certain constant. Conventional upwind differe
approximation is computationally stable, but is only first-order accurate; and the result
solution exhibits the effect of artificial viscosity [18, 21].

For the two-dimensional convection diffusion equation, Geptd [8] proposed a fourth-
order nine-point compact finite difference formula, which was shown to be computatione
efficient and stable, and to yield highly accurate numerical solutions. The resulting lin
system can be solved by classical iterative methods for large values of the Reynolds nur
[8]. Zzhang [27, 29] and others [7] proposed a few multigrid methods with accelerati
schemes and special intergrid transfer operators to solve the linear systems arising fror
fourth-order compact discretization of Eq. (1) with high Reynolds numbers.

Although considerable amount of work has been done in the past, there is still a lack
completely satisfactory computational (discretization and solution) scheme that is suite
for all types of convection diffusion equations [35]. Most applications of practical intere
require some form of mesh grading or local mesh refinement to deal with locally rapic
changing solutions [6, 21]. The problem of constructing high-order compact schemes
nonuniform grids has been raised recently, and a few diffusion dominated boundary le
problems have been solved to show the effect of using nonuniform grids with the four
order compact scheme [9, 24]. The present work is to employ the ideas of [9, 24] to sc
boundary layer problems with high Reynolds numbers, and to investigate the converge
behavior of multigrid method for solving the resulting linear system (with grid stretching

In this paper, we solve Eq. (1) with boundary layers and with Reynolds numbers up to .
using a fourth-order compact scheme on a graded mesh with a coordinate transform:
technique and a multigrid method. We discuss the fourth-order compact discretizat
scheme for transformed convection diffusion equation in Section 2. In Section 3, we brie
introduce the multigrid method and outline its advantages to solve the relevant sp:
linear systems. Numerical experiments are conducted in Section 4 to show the necessi
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the graded mesh and a grid transformation for computing high-accuracy solutions. Sc
concluding remarks are summarized in Section 5.

2. FOURTH-ORDER COMPACT DIFFERENCE SCHEME

Fourth-order nine-point compact finite difference schemes for Eq. (1) on a rectangt
uniform grid have been designed by several authors [5, 8, 12, 22, 23]. It is believed t
these schemes are mathematically equivalent, although they were derived from diffe
approaches. We mainly focus on the particular formula given by Gat#h[8], since we
will use their technique on a nonuniform grid in the present work [9] SL.be discretized on
a uniform grid in bothx andy dimensions. The approximate value of a functigr, y) ata
reference mesh poiiix, y) is denoted byig. The approximate values at its eight immediate
neighboring mesh points are denotedhyi = 1, 2, ..., 8. The compact nine grid points
are labeled as follows

Usg Uz Us
Uz Up Ujp
Uz Usg Ug

The compact finite difference formula for the mesh pg@inty) involves the nearest eight
neighboring mesh points with the uniform mesh diz&ince we will not use this fourth-
order compact scheme directly on Eq. (1) with boundary layers, for the sake of sav
space, we refer readers to the original paper for the details of the formula and the deriva
procedure [8]. This discretization scheme has been shown to be computationally effic
and numerically stable with respect to the application of iterative techniques, in additi
to producing high-accuracy approximate solutions for smooth functions [9, 29, 32]. T
unconditional stability of the fourth-order compact scheme makes it very attractive in
with multigrid method [29]. Since the iterations on all coarse grids converge, they provi
sufficiently accurate corrections to the fine-grid iteration. In other words, there is no c
Reynolds number effect on the coarse grids [35]. This is an advantage that is not share
the central difference scheme.

2.1. Transformed Convection Diffusion Equation

For many convection diffusion problems encountered in practical applications, the cc
putational domain usually contains steep boundary layers in which the solution fluctue
rapidly. For such problems, the numerical solution from the central difference scheme r
exhibit nonphysical oscillations if the mesh size is not fine enough. Although such ost
lations can be suppressed by the use of the upwind difference scheme, the accuracy ¢
computed solution from this scheme is reduced to the first order. Very fine discretization
to be used to yield an approximate solution of acceptable accuracy. Such afine discretiz:
results in very large linear systems that demand large computational effort.

It has been shown that the fourth-order compact scheme can suppress the nonphy
oscillations to a certain degree [35]. For one-dimensional model problems, it can be sh
that the computed solution with the fourth-order compact scheme is nonoscillatory [2
However, numerical and analytic studies indicate that the order of the computed solus
from the fourth-order compact scheme may be reduc@i{td) when the Reynolds number
is large [21, 26, 35]. For probems with boundary layers, the accuracy of the compu



HIGH ACCURACY ITERATIVE SOLUTION 563

solutions from the three difference schemes mentioned in this paper is undesirable |
The advantages of the fourth-order compact scheme may be lost if there are no n
points inside the boundary layers. To obtain a high accuracy solution to the boundary |
problems, suitable techniques must be utilized to place a certain number of mesh pc
inside the boundary layers. To avoid too many grid points in the computational domain an
reduce the total computational cost, the smooth region of the domain should be placed
relatively few grid points. This leads to the requirement of graded mesh techniques, Ic
mesh refinement strategies, or grid adaptive algorithms [6, 16, 21]. However, the exis|
fourth-order compact scheme and the high-order compact methodology can only work
a uniform grid® A typical solution to such a conflict is to use a coordinate transformatio
technique to map a graded mesh to a uniform mesh, so that the fourth-order compact scl
can be applied on the transformed uniform grid [3]. This is the approach that will be us
in our study. Similar approaches have been used by Gatatia[9] and by Spotz and Carey
[24].

Consider a nondegenerate mag- x(£, ), Y = Y(&, n), which transforms Eq. (1) from
agradedmeshon@x < 1,0<y < 1ltoauniformmeshon@& ¢ <1,0<n < 1. The
transformed equation can be written as

a(&, MUge + BE, MUy, + cE, MUz, +1E, Mu: +uéE, nu, = 1&, 7,  3)

where the coefficients are given by

a(E,m) =& +E, BE ) =i +n,
A&, m) = P&, méx + A&, mEy + Exx + &yy,
w(&, m) = pE&, Mnx + A&, mMny + nxx + nyy,
c(&, ) = 2(6xnx + yny).

The difference between the transformed Eq. (3) and the original Eqg. (1) is the varia
diffusion coefficientsw, 8, andc of the second-order derivative terms appearing in th
transformed equation, but not in the original equation. In particular, the second-order ci
derivative termug, in Eq. (3) may present some problems to the fourth-order compact fc
mulation [24]. Fortunately, for the orthogonal grids used in our current study, the coefficie
c(&, n) is identically zero throughou®. Hence, Eq. (3) is simplified as

a(§, MUgz + B(E, MUy + A&, MU + 1§, Muy = (5. n). 4

2.2. Fourth-Order Approximation for Transformed Equation

To derive a fourth-order compact finite difference approximation, we assume that
solutionu(g, n) of Eq. (4) satisfies the Taylor series expansion

ug. m =y ajé'y’

3 There are some implicit high-order compact schemes that can work on nonuniform grids [19]. These high-o
compact schemes are implicit because they involve discrete values of the first- and second-order derivativ
addition to the discrete function values.
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locally on the mesh points with a local center at the reference grid point 0 and the neare
neighboring grid points. The coefficientsg, , u, and the forcing functiorf are assumed
to have similar Taylor series expansions on the grid points in question. The fourth-or
compact difference scheme can be obtained by substituting the Taylor series expans
into Eg. (4) and by obtaining the representationdan Eq. (4) to obtain a finite difference
formula of order 4. This is achieved by truncating the Taylor series up to order 4 (by sett
all the Taylor series coefficients af; to zero fori 4 j > 4). The derivation procedure is
straightforward but tedious. We omit the details and refer interested readers to the orig
paper of Guptat al.[9]. We mention that a different procedure was proposed by Spotz ai
Carey in which the property of the mapping function is also considered [24].

The nine-point compact finite difference approximation of Eq. (4) yields at each interr
grid point a linear equation of the form [9]

8

Z(XI‘UJ’ =6h2foo+h4[f20+ foz + T1 10+ T2 foal, (5)
j=0

where the coefficients are given by

a0 =2R1+ 2R, +4S, a1 =R+ Rs,

w2=R+ Ry, az=Ri—Rs, as=R— Ry,
B=5+S$S+S+S 6=S+S-FS- S,

=5 -+S-S, =9 -$S-F+S,

T1 = (hoo — 210)/(2200), T2 = (oo — 2Bo1)/(2Bo0),

Ry = 5000 — Boo + Tth?(hoo + 10) + Toheror + h?(er20 + o2 + A10),
R = 500 — @00 + T2h?(1oo + Bor) + Tih?Bao + h*(Bzo + Boz + o).
Rs = h/2(500 — 2B10 — 2Bo0T1) + h®/2[Tih1o0 + Tohor + Azo + o2l
Rs = h/2(5100 — 20110 — 2000 T2) + h®/2[Tapt01 + Tutao + 20 + o2l
S = 1/2(c00 + Boo), S = h/4[roo + 2001 + 2To0t00],

S = h?/4[u10 + ror + Tapoo + Tohool.  Su = h/4[hoo + 2B10 + 2T1Boo].

The truncation error of the approximation scheme (%) i8*); see [9] for details. Equation
(5) utilizes partial derivatives of the functionsg, A, u, and f . A double subscriptij” on
any of these functions denotes theH j)th partial derivative defined by

1 9§ty
= 1 agion

In this formulation, we require that the partial derivatives in question exist analyticall
It is also possible to approximate these partial derivatives by finite difference formul
However, as Spotz and Carey showed in [24], the finite difference approximations for
partial derivatives must be of fourth-order accuracy in order for the entire approximati
scheme to maintain its fourth-order accuracy.
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3. MULTIGRID METHOD

Multigrid method is among the fastest and most efficient algorithms for solving line
systems arising from discretized elliptic partial differential equations [2, 25]. The mul
grid algorithm iterates on a hierarchy of successively coarser grids until the convergenc
reached (the residual equations are approximately solved on the coarse grids); conside
computational time is saved by doing major computational work on the coarse grids.
more details on the motivation, philosophy, and processes of multigrid method, readers
referred to [2, 25] and the references therein. For the specific multigrid methods usel
solve the convection diffusion equation with a fourth-order compact discretization schel
see [7, 10, 15, 27, 29, 32]. In general, the standard multigrid method works well with 1
fourth-order compact scheme for Re10®. For convection dominated problems, accelera
tion schemes, such as the minimal residual smoothing technique [28], and special intel
transfer operators, have to be employed to achieve reasonable convergence rates.

For convection diffusion equations discretized by the upwind type schemes, some fo
of algebraic multigrid approaches have been shown to be efficient [4, 17, 20]. An Il
preconditioning technique has also been used to solve the sparse linear systems arising
discretized convection diffusion equations with the central difference, upwind differen
and the fourth-order compact schemes [35].

In the present work, we use a standard multigrid approach with an alternating line Gat
Seidel relaxation [25]. Smoothing analyses in [32] show that the alternating line Gau:
Seidel relaxation is a robust smoother for the convection diffusion equation discreti:
by the fourth-order compact scheme, although the point Gauss—Seidel relaxation alsc
smoothing effect for all Reynolds numbers. One presmoothing and one postsmoott
sweeps are performed on each level in a V-cycle algorithm. In addition, a standard bilir
interpolation operator and a full weighting restriction operator are used as the interg
transfer operators [25].

4. NUMERICAL RESULTS

Two test problems were solved using the discretization and solution techniques discu:
in previous sections. The first two subsections report the accuracy of the computed solut
of the fourth-order compact scheme with respect to the grid stretching, assuming that
linear systems were solved successfully by the multigrid method. The third subsect
discusses the effect of grid stretching on the convergence of the multigrid method.

4.1. Problem 1

We first consider a constant coefficient convection diffusion equation
—€(Uyxx + Uyy) + Uy = 0 (6)
defined on the unit square®x < 1,0 < y < 1. The boundary condition is prescribed as

ux,0 =u(x,) =0; u(,y) =sinzy; u(l,y)=2sinmy.
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FIG. 1. Anillustration of the exact solution on original grid with the uniform mesh, the computed solutio
on the transformed grid, and the computed solution on the stretched grid for Problemel-wt901.

The exact solution is [9]
u(x, y) = exp(x/2¢) siny[2 exp(—1/2¢) sinho x + sinho (1 — x)]/sinho,

whereo? = 72 4+ 0.25/¢€2.

This problem represents a convection dominated flow and was used as one of the
problems by Guptat al. [9], who tested it withe as small as 0.01. The coefficient of the
convective term is a constant. The top picture of Fig. 1 is the exact solution of Eq. (6) w
¢ = 0.001 and is shown on a uniform mesh in the original coordinate system. For most f
of the domain, the exact solution exhibits smooth values. But it has a steep boundary I
of thicknessO(¢) along the downstream edgexat= 1, and has shear layers of thickness
O(4/¢) along the top and bottom edgesyat 0 andy = 1.

Following Guptaet al. [9], we used the following coordinate transformation to resolve
the boundary layer

x = [1—exp(—Q&)]/[1 — exp(—Q)]. ()

This transformation maps the intervakOx < 1 onto O< & < 1;they coordinate direction

is not changed. A uniform mesh intranslates into a graded meshxiwhich is coarser
nearx = 0 and finer neax = 1 (see the bottom picture of Fig. 1). The param&eelates
the coarsest mesh width nearx = 0 with the finest mesh widtl nearx = 1. The total
number of mesh points along ti§ecoordinate direction i€ = In(y)/(1 — A&), where

y = D/d is the mesh stretching ratio, ang = 1/N (N is the total number of mesh
intervals in thet coordinate direction). Using the coordinate transformation of Eq. (7), th
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partial differential equation (6) becomes

2 1
O S

wherez = exp(Q&)[1 — exp(— Q)]. Note that the original Eq. (6) is a constant problem.
But the transformed Eq. (8) is a variable coefficient problem; since the paranisteow
a function of the independent varialile

The fourth-order compact scheme discussed in Section 2 is applied to the transfor
Eqg. (8) on a uniform grid of thé andy variables with a uniform mesh size The total
number of grid points in each coordinate dimensioMNis= 1/h + 1, of which (N — 1)
are internal points with unknown values. At each internal grid point, we have a nine-pc
linear equation of the form (5) and all of tii&l — 1)2 equations constitute a sparse linear
system of the form (2). This sparse linear system is then solved by a multigrid method.
the standard (geometric) multigrid method, we actually discretized Eq. (8) on all coa
meshes (on transformed grids) with a reduction ratio of 2 between the successive me:
until the coarsest mesh has only one internal grid point. (This is the standard coarse
technique used in geometric multigrid method [25]).

We computed the numerical solutions of Eq. (8) for several values of the perturbat
parametek and the mesh stretching paramegerSample results for 10 <€ < 1 are
givenin Table I. The errors reported are the maximum absolute error over all of the disci
grid points. In Table I, the parametgicontrols the amount of grid stretching;= 1 implies
no stretching was used. The last column shows the order of accuracy of the discretize
scheme and the data were computed by ordbrg, (€rrof—1/64/€rmoh—1/129).

TABLE |
Maximum Error in the Computed Solution of Problem 1 with Different Diffusion
Coefficiente, Stretching Ratio «, and Discretization Parameterh

€ y\h 1/64 1128 Order
10° 1 3.69(—9) 2.30(-10) 4.00
5 1.36(=7) 8.31(-9) 4.03
1 9.01(-7) 5.62(—8) 4.00
10! 10 2.50(=7) 1.53(—8) 4.04
20 2.70(=7) 1.67(—8) 4.03
100 7.70(=7) 4.75(-8) 4.02
1 3.44(—3) 2.12(—4) 4.02
10 3.31(-5) 2.12(—6) 3.96
100 2.03(—6) 1.27(=7) 4.00
1 4.68(—1) 2.20(—1) 1.09
1072 100 3.18(—4) 2.13(-5) 3.90
400 2.20(—5) 1.43(—6) 3.96
103 4% 10 2.19(—5) 1.43(—6) 3.94
10 10 3.58(—5) 2.09(—6) 4.10
105 106 9.20(-5) 5.70(—6) 4.01
10°° 100 1.91(—4) 1.20(—5) 3.99

107 9 x 10 6.78(—4) 2.36(-5) 4.84
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It can be seen that the fourth-order compact scheme indeed yields solut@mhdF
when Eg. (6) does not have a steep boundary layereFer0.001, even the fine mesh
sizeh = d = 1/128 without stretchingy = 1) could not resolve the boundary layer. The
boundary layer has a thickness of 0.001, and the meshdsizd, /128 = 0.0078 implies
that there was no grid point placed inside the boundary layer. The computed solution fr
the fourth-order compact scheme has an accuracy order of 1.09 (see Table I, row 10
column 5). However, when the mesh was stretched, the fourth-order accuracy is recov:
with y = 100. Within a certain range of grid stretching, the larger the stretchingyratiwe
more accurate the computed solution. However, too much stretching may have a neg:
effect. This is demonstrated by the results in rows 5 and 6 with0.1; the use of the
stretching ratioyy = 20 andy = 100 yielded computed solution with a lower accuracy
than that with a stretching ratip = 10. This is because, in these cases, the boundary lay
is not too steep. A larger stretching ratio puts too many grid points along the bound
x =1 and too few along the boundary= 0. Thus, the maximum absolute error was
actually found close to the boundaxy= 0, not close to the boundary layerat= 1, as
one would expect.

From Table I, we can see that, with a nonuniform grid, a boundary layer problem wi
large values of Re (smadl) (as large as 10 can be solved. This table indicates that the
steeper the boundary layer, the larger the stretching ratio is needed. Most important!
shows that the fourth-order accuracy rate is achieved even when the problem is hig
convection dominated. Simply put, the high-order accuracy of the fourth-order comp
scheme is recovered by the use of grid stretching strategy. This result is surprising si
several authors have shown that the fourth-order compact scheme yields computed soll
of second-order accuracy at high Reynolds numbers on uniform grids [21, 26, 35]. C
numerical results show that the fourth-order compact scheme may still maintain its h
accuracy at high Reynolds numbers on nonuniform grids.

We also show in Fig. 1 the exact solutian£ 0.001, h = 1/32) on the original grid with
a uniform mesh, the computed solution on the transformed grid, and the computed solu
on the original grid with a stretched mesh. We can see that there is no grid point inside
boundary layer on the original uniform grid. The middle picture of Fig. 1 gives an impressi
that the transformation of the stretched grid to a uniform grid has the effect of smothing
boundary layer so that a few grid points can be placed into the regiot§ redr. In fact, the
boundary layer almost disappeared on the transformed grid. It seems that the solutiol
the stretched grid is smooth and the fourth-order compact approximation is applicable.
bottom picture of Fig. 1 shows that with a mesh stretching ratie 10°, the grid points
are clustered along the boundary layet at 1. There are a few grid points placed inside
the boundary layer, and the computed solution is shown to be in good agreement with
exact solution.

Figure 2 plots the solution profiles@at= 1 — h when a different mesh size was used; the
other parameters were seteas: 0.001,y = 5. The solution accuracy is rapidly improved
with the increase in the number of grid points. Comparison of the computed solutions w
different stretching ratios is given in Fig. 3, where the parameters were set#&s001,

h = 1/64, and the stretching ratios were set at 1, 5, 10, and 100, respetti@eige
again, the more severe the grid stretching, the more accurate the computed solution. V

4The solutions shown in four subfigures of Fig. 2 and in other similar figures are not necessarily the sz
solution. They are the solutions relative to the particular valudsasfdy .
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FIG.2. Comparison ofthe exact solution and the computed solution of Problers1(001) with a stretching

ratioy =5 até = 1 — h with different mesh size. Solid line is the exact solution, dashed line is the comput

solution.
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FIG.3. Solution profiles of Problem k(= 0.001) with different stretching ratiosat= 1 — hwithh = 1/64.
Solid line is the exact solution, dashed line is the computed solution.
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FIG. 4. Maximum absolute errors of the computed solution of Problem 1 with different stretching yatios
and different mesh size.

y = 100, we had the most accurate solution. In this case, the computed solution is gra
cally indistinguishable with the exact solution.

Figure 4 shows how the location of the maximum absolute errors changes with differ
stretching ratios and with different mesh size. Eet 0.1, we obtained the highest accu-
racy aty = 5. When the stretching ratio increased, the maximum absolute error increa
because of the dominance of the errors at mear0, which is in agreement with the results
of Table I. For a medium thickness boundary layer witl 0.01, the maximum absolute
errors keep as a constant. For a much steeper boundary layer, esg= 2001, the max-
imum absolute errors keep as a constant after a much larger stretching ratio. Figure 5 i
error distribution contours in the computational domain. It gives results similar to those
Table | and in Fig. 4. It is clear that a different stretching raticesults in the maximum
absolute error being found at different locations.

4.2. Problem 2

For the second test problem, we chose in Eq. (1) the following convection coefficient

pP(x,y) = Rex(x =1D(1—-2y), q(x,y)=—-Rey(y - 11— 2x).

It is obvious that this test problem has a stagnation point at (0.5, 0.5). A stagnation p
(X0, Yo) is the one inside the computational domain where both convection coefficiel
vanish; i.e.,|p(Xo, Yo)| + 19(Xo, Yo)| = 0. Convection diffusion equations with stagnation
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points in their domains are usually used to model recirculation flow problems. For lal
Re, this type of problem is very hard to solve, especially when standard multigrid metr
is used as the solution technique [29]. The exact solution is chosen similar to the one
by Spotz and Carey [24] as

ux,y) =[1-bM]1L —byl,
where

b(x) = [exp(—Re(x — 1)) — 1]/[exp(Re) — 1],
b(y) = [exp(—Re(y — 1)) — 1]/[exp(Re) — 1].
The exact solution has steep boundary layers xeat0 andy = O (see the top picture of

Fig. 6. To solve this problem with the boundary layer, we introduce the mapping functic
[24]

x(€) =&+ Lsinng, yop =n+ L sinmn,
T T
wherey is the grading parameter. The mapping function is invertibléjfor< 1. The ex-

pressiory > 0 corresponds to a compression (clustering) to the right (L) and similarly
to the left k = 0) for y < 0. In the present calculation, we select= 0.0, —0.2, —0.5,

CIEACTVONNE o 55 LAFArTIrTY e 1O

FIG. 5. Absolute error distribution contours of Problem &= 0.01) with different stretching ratios and
h = 1/32.
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Exact solution (Re = 50, gamma = -0.9, h = 1/32)
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FIG.6. Anillustration of the exact solution on the original grid with the uniform mesh, the computed solutic
on the transformed grid, and the computed solution on the original stretched grid of Problem 2 witB(Re
y =-0.9,h=1/32.

—0.7, —0.9 to compare the effect of the grid stretching ratio on the accuracy of the col
puted solution. The test problem was computed on a sequence of uniformly refined g
with h = 1/16, 1/32, 1/64, 1/128 for several Reynolds numbers Rel, 50, 100, 250,
500, 1000. Figure 6 shows the exact solution on the original uniform grid, the compu
solution on the transformed grid, and the computed solution on the original stretched g
respectively. The parameters were chosen asf®8,y = —0.9, andh = 1/32. Because
of the high stretching ratio, we obtain a very accurate computed solution (see the bot
picture of Fig. 6). The comparison of the maximum absolute errors with different mesh s
and several stretching ratiog & 0.0, —0.2, —0.5, —0.7, —0.9) are depicted in Fig. 7.

For the computed solution with different stretching ratios, Fig. 7 shows that the maximt
absolute errors decreased rapidly when either the mesh size decreased or the mesh stre
ratio increased. Such a behavior is what we would normally expect for a good numers
scheme for solving the convection diffusion equations.

Figure 8 further demonstrates the effect of the grid stretching on the accuracy of
computed solution. It shows the solution profiles of Problem 2 with-RED0 att =1 — h
withh = 1/32. It can be observed that the difference between the computed solution and
exact solution was reduced quickly as the amount of the grid stretching was increased. \
a sufficient grid stretching, the computed solution is graphically indistinguishable from t
exact solution.

Our multigrid method did not converge for solving Problem 2 when-RED0O. This
is a typical large Re problem case with a stagnation poir2,invhich will be discussed
later. However, in order to show that the fourth-order compact scheme can produce acct
solution for this problem with large Re, we used a preconditioned Krylov subspace mett
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FIG.7. Comparison of the maximum absolute errors of the computed solutions of Problem=2%Rewith
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FIG.8. Solution profiles of Problem 2 (Re 100) with different stretching ratioséat= 1 — hwithh = 1/32.
Solid line is the exact solution, dashed line is the computed solution.
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TABLE 1l
Maximum Absolute Errors in the Computed Solution of Problem 2 with Different
Convection Coefficient Re, Stretching Ratioy, and Discretization Parameterh

Re y\h 1/128 1/256 Order
1 0.0 7.86(—12) 4.97(-13 3.98
-0.9 9.09(—-9) 5.68(—10) 3.99
10 0.0 5.25(—8) 3.28(-9) 4.00
-0.9 4.88(—8) 3.05(-9) 4.00
1% 0.0 9.36(—4) 6.03(-5) 3.96
-0.9 3.38(-7) 2.11(-98) 4.00
16 -0.9 9.64(—4) 6.22(-5) 3.95
—0.99 1.07(-5) 6.55(—7) 4.03
10 —-0.99 8.58(—4) 5.16(-5) 4.06
—0.999 7.72(—4) 4.38(-5) 4.14
10 —0.999 5.67(—3) 2.66(—4) 4.41

to solve the linear system [34]. The computed results are listed in Table I, which show t
fourth-order accuracy is achieved for Problem 2 with Re as large’aptdvided sufficient
grid stretching is performed.

4.3. Multigrid Convergence

In this subsection, we demonstrate how the grid stretching affects the convergenc
the multigrid method that we used to solve the resulting sparse linear systems. The m
grid iteration was stopped when the finest grid residual in 2-norm was reduced‘by 1
orders of magnitude. A total of 40 multigrid iterations were allowed in each test run. V
used some random vectors as the initial guess. A symbol “—" in a table indicates lack
convergence.

We first tested the multigrid method with an alternating line Gauss—Seidel (ALG.:
smoother for solving Problem 1 withh= 1/64. The number of multigrid iterations with
respect to different diffusion parameternd different grid stretching ratip are listed in
Table IlI.

TABLE IlI
Number of Multigrid Iterations with ALGS Relaxation for Problem 1 ( h = 1/64)
with Respect to the Diffusion Parametere and the Grid Stretching Ratio ~

e\y 1.1 10 16 10° 10* 108 108 107 108

10- 1 1 1 1 1 3 3 4 5
10° 1 1 1 1 3 2 5 5 4
10 1 1 2 3 2 2 5 4 8
10° 3 6 8 7 10 8 7 11 —
102 5 6 6 8 8 8 9 — —
10 6 6 5 6 — 10 13 15 —
10° 6 8 7 7 13 6 9 13 13
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Some comments on the results in Table 1l are helpful.

e The degree of the grid stretching affects the convergence rates of the multigrid ite
tions. From left columns to right columns, the magnitude of the stretching ratio increas
and the number of multigrid iterations required to converge increased also. For cer
stretching ratios, the multigrid algorithm did not reach convergence, most likely becal
of some data generated by the stretched grids. One possible explanation is that for ce
values ofe andy, the transformed computational domain contains some stagnation poir
It can be shown that the convection coefficientigin Eqg. (8) vanishes at

B Ine(1 — exp(—Q))
o) ,

if this quantity falls into the interval (0, 1). This is exactly the case in Table Ill with 0.1
andy = 10%. With h = 1/64, we can see the coefficientwf vanishes a ~ 0.2461.

e The data in the upper left corner of Table Il indicate that the multigrid algorithr
converged extremely fast when the problem was convection dominated with very sn
values ok, and when the degree of the grid stretching was not too severe. This phenome
is not surprising since in this case, the ALGS smoother was a direct solver [25]. What
been missing in literature on this topic is that the computed solution has no accuracy bec
of the very steep boundary.

e The data in the lower right corner imply that unnecessary grid stretching deteriora
the convergence rate of the multigrid method.

e The datain the upper left corner show that the number of multigrid iterations increas
as the stretching ratio increased. However, in these cases, the computed solution obvic
has a certain degree of accuracy and the iteration numbers are reasonable.

e The datain the lower left corner represent the cases in which no grid stretching or o
a slight grid stretching were needed. The iteration numbers are reasonable. These «
represent the classical multigrid method applied to elliptic problems.

g:

The best known property of geometric multigrid method is probably its grid independe
convergence rate when applied to elliptic problems. We also tested the effect of the «
stretching on the convergence dependence with respect to the grid size. Our test was
ducted for Problem 1 wite = 10-2. The results are listed in Table IV. We find that grid
independent convergence rate was achieved when the grid was not stretched. With a
stretching, the multigrid convergence rate is dependent on the grid size. However, the
nature of such a dependence is interesting. With a light stretching, the convergence
was higher when the mesh was refined. With a severe stretching, the convergence rate
deteriorated when the mesh was refined.

TABLE IV
Number of Multigrid Iterations with ALGS Relaxation for Problem 1 ( € = 10-3)
with Respect to Different Mesh Sizeh and Different Grid Stretching Ratio ~

h\y 11 10 16 10° oy 100 10° 10 10
1/32 3 4 11 6 7 6 4 6 —
1/64 3 6 8 7 10 8 7 11 —

1/128 3 8 6 11 15 11 9 15 —
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FIG. 9. Number of multigrid iterations for solving Problem 2 with different Reynolds number with respec
to the grid stretching ratig.

We also tested our multigrid iteration algorithm for solving Problem 2. Since this proble
has a stagnation point in its domain, we can only obtain multigrid convergence far Re
10°. For larger Reynolds number cases, special intergrid transfer operators, such as
scaled residual injection technique, are needed to recover reasonable convergence ra
a multigrid method [29, 30, 33, 34]. Such topics are beyond the scope of this paper.

Figure 9 shows the effect of the stretching ratio on the convergence rate of the multic
iterations for solving Problem 2 with different Reynolds numbers. We note that the multigl
convergence rate was not affected substantially by the effect of the grid stretching wi
Re < 100. However, the solid line in Fig. 9 indicates that the grid stretching did affect tt
multigrid convergence substantially when Rel000. It is interesting to point out that too
much and too little grid stretching made the multigrid algorithm converge slightly faster
the case of Re= 1000.

5. CONCLUDING REMARKS

We have investigated the use of a multigrid solution technique with a fourth-order nir
point compact finite difference scheme to solve the two-dimensional convection diffusi
equation with boundary layers. The boundary layers are first resolved by using a noni
formly discretized grid so that a few grid points can be placed into the boundary layers.
orthogonal coordinate transformation is then employed to transform the nonuniform g
into a uniform grid, on which the fourth-order compact scheme is applied.

The effect of the stretching ratio on the accuracy of the computed solution is demonstre
by solving two test problems. The numerical results indicate that a nonuniform grid
necessary for solving convection diffusion problems with boundary layers. Without a me
grading technique, the fourth-order compact scheme is hopeless with respect to a boun
layer, since there is no grid point inside the boundary layer. However, with a mesh grad
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technique and a suitable coordinate transformation strategy, the high-order accuracy o
computed solution from the fourth-order compact scheme can be recovered. We have st
that the fourth-order accuracy can be obtained for certain highly convection domina
problems with high Reynolds numbers, if a suitable grid stretching is utilized. This res
was not previously known. In fact, the computed solution for Problem 1 is shown to
fourth-order accurate at very high Reynolds numbers on stretched grids. This is in cont
with the situation in which a fourth-order compact scheme is used to solve convect
diffusion problems without boundary layers on uniform grids and the computed solutior
not fourth order accurate at high Reynolds numbers [21, 26, 35].

The multigrid method was shown to be very powerful to solve certain discretized bour
ary layer problems. For the present two test problems, the transformed equations |
variable coefficients, the multigrid method with the alternating line Gauss—Seidel rel:
ation works just fine. However, we did observe the negative effect of the grid stretching
the convergence rate of the multigrid iterations. We find that, in order to solve a convect
diffusion problem with boundary layers, a reasonable degree of grid stretching is neces:

REFERENCES

1. R. F. Boisvert, Families of high order accurate discretizations of some elliptic prot$éfid,J. Sci. Statist.
Comput2(3), 268 (1981).

2. A. Brandt, Multi-level adaptive solutions to boundary-value problevtath. Comp31(138), 333 (1977).
3. G. F. Carey,Computational Grids. Generation, Adaption, and Solution Stratefi@ylor & Francis,
Washington, DC, 1997).
4. P. M. de Zeeuw, Matrix-dependent prolongations and restrictions in a blackbox multigrid dof®emput.
Appl. Math.33, 1 (1990).
5. S.C.R. Dennis and J. D. Hudson, Comg#dinite-difference approximations to operators of Navier-Stokes
type,J. Comput. Phys85, 390 (1989).
6. P. M. Gresho and R. L. Lee, Don't suppress the wiggles—they're telling you some@amgbut. Fluids9,
223(1981).
7. M. M. Gupta, J. Kouatchou, and J. Zhang, A compact multigrid solver for convection-diffusion equatiol
J. Comput. Physl32 123 (1997).
8. M.M. Gupta, R. P. Manohar, and J. W. Stephenson, A single cell high order scheme for the convection-diffu
equation with variable coefficientst. J. Numer. Meth. Fluidd4, 641 (1984).
9. M. M. Gupta, R. P. Manohar, and J. W. Stephenson, High-order difference schemes for two-dimensi
elliptic equationsNumer. Meth. Partial Differential Eq4, 71 (1985).
10. M. M. Gupta and J. Zhang, High accuracy multigrid solution of the 3D convection-diffusion equgpioin,
Math. Comput1132-3), 249 (2000).
11. B.P.Leonard and S. Mokhatari, Beyond first-order upwinding: The ultra-sharp alternative for non-oscillat
steady-state simulation of convectidnt. J. Numer. Meth. En@0, 729 (1990).
12. M.Li, T. Tang, and B. Fornberg, A compact fourth-order finite difference scheme for the steady incompress
Navier—Stokes equationiit. J. Numer. Meth. Fluidg0, 1137 (1995).
13. R. E. Lynch and J. R. Rice, High accuracy finite difference approximation to solutions of elliptic part
differential equationsProceedings of National Academy Sciences U.356), 2541 (1978).
14. B.J. Noye and H. H. Tan, A third-order semi-implicit finite difference method for solving the one-dimensior
convection-diffusion equatiomnt. J. Numer. Meth. En@6(7), 1615 (1988).
15. A. L. Pardhanani, W. F. Spotz, and G. F. Carey, A stable multigrid strategy for convection-diffusion us
high order compact discretizatioBlectron. Trans. Numer. Angb, 211 (1997).
16. J. Pike, Grid adaptive algorithms for the solution of the Euler equations on irregularlyi@snput. Phys.
71,194 (1987).



578 GE AND ZHANG

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.
29.

30.

31.

32.

33.

34.

35.

A. A. Reusken, Multigrid with matrix-dependent transfer operators for convection-diffusion problems,
Multigrid Method 1V, Proceedings of Fourth European Multigrid Conferereited by P. W. Hemker and
P. Wesseling (Brikhauser Verlag, Basel, 1994), pp. 269-280.

P. J. Roach&omputational Fluid DynamicgHermosa, Albuquerque, NM, 1976).

S. G. Rubin and P. K. Khosla, Polynomial interpolation methods for viscous flow calculatid®smput.
Phys.24, 217 (1977).

J. W. Ruge and K. 8ben, Efficient solution of finite difference and finite element equationbuhigrid
Methods for Integral and Differential Equationsdited by D. J. Paddon and H. Holstein (Clarendon Press
Oxford, 1985), pp. 169-212.

A. Segal, Aspects of numerical methods for elliptic singular perturbation prob®&i#b] J. Sci. Statist.
Comput.3, 327 (1982).

W. F. SpotzHigh-Order Compact Finite Difference Schemes for Computational MechaRie®. thesis
(University of Texas at Austin, Austin, TX, 1995).

W. F. Spotz and G. F. Carey, High-order compact scheme for the steady stream-function vorticity equati
Int. J. Numer. Methods Eng88, 3497 (1995).

W. F. Spotz and G. F. Carey, Formulation and experiments with high-order compact schemes for nonuni
grids, Int. J. Numer. Meth. Head & Fluid Flow(3), 288 (1998).

P. Wesselingdn Introduction to Multigrid Method§Wiley, Chichester, England, 1992).

I. Yavneh, Analysis of a fourth-order compact scheme for convection-diffudi@@omput. Physl33 361
(2997).

J. Zhang, Accelerated high accuracy multigrid solution of the convection-diffusion equation with hi
Reynolds numbefNumer. Meth. Partial Differential Eq¥.7(1), 73 (1997).

J. Zhang, Minimal residual smoothing in multi-level iterative mettfgahl. Math. Comput84(1), 1 (1997).

J. ZhangMultigrid Acceleration Techniques and Applications to the Numerical Solution of Partial Differentia
Equations Ph.D. thesis (The George Washington University, Washington, DC, 1997).

J. Zhang, Residual scaling techniques in multigrid, I: Equivalence phppl, Math. Comput86(2—3), 283
(1997).

J. Zhang, An explicit fourth-order compact finite difference scheme for three dimensional convection-diffus
equationCommun. Numer. Meth. Eng4, 209 (1998).

J. Zhang, On convergence and performance of iterative methods with fourth-order compact Ssbemes,
Meth. Partial Differential Eqs14, 262 (1998).

J. Zhang, Residual scaling techniques in multigrid, Il: Practical applica#igms, Math. Comput90(2-3),

229 (1998).

J. Zhang, A note on an accelerated high accuracy multigrid solution of the convection-diffusion equation v
high Reynolds numbeNumer. Meth. Partial Differential Eq4.6(1), 1 (2000).

J. Zhang, Preconditioned iterative methods and finite difference schemes for convection-dffosidvath.
Comput.1091), 11 (2000).



	1. INTRODUCTION
	2. FOURTH-ORDER COMPACT DIFFERENCE SCHEME
	3. MULTIGRID METHOD
	4. NUMERICAL RESULTS
	FIG. 1.
	TABLE I
	FIG. 2.
	FIG. 3.
	FIG. 4.
	FIG. 5.
	FIG. 6.
	FIG. 7.
	FIG. 8.
	TABLE II
	TABLE III
	TABLE IV
	FIG. 9.

	5. CONCLUDING REMARKS
	REFERENCES

