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A fourth-order compact finite difference scheme and a multigrid method are em-
ployed to solve the two-dimensional convection diffusion equations with boundary
layers. The computational domain is first discretized on a nonuniform (stretched)
grid to resolve the boundary layers. A grid transformation technique is used to map
the nonuniform grid to a uniform one. The fourth-order compact scheme is applied
to the transformed uniform grid. A multigrid method is used to solve the resulting
linear system. Numerical experiments are used to show that a graded mesh and a grid
transformation are necessary to compute high accuracy solutions for the convection
diffusion problems with boundary layers and dicretized by the fourth-order compact
scheme. c© 2001 Academic Press
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1. INTRODUCTION

Numerical simulation of the convection diffusion equation plays a very important role
in computational fluid dynamics to simulate flow problems. A two-dimensional convection
diffusion equation satisfying Dirichlet boundary conditions can be written in the form of

uxx + uyy+ p(x, y)ux + q(x, y)uy = f (x, y), (x, y) ∈ Ä,
(1)

u(x, y) = g(x, y), (x, y) ∈ ∂Ä.
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The convection coefficientsp(x, y) andq(x, y) are functions of the independent variables
x andy, and are assumed to be sufficiently smooth. HereÄ is a convex domain consisting
of a union of rectangles, and∂Ä is the boundary ofÄ. The magnitude ofp(x, y) and
q(x, y) may be referred to as the Reynolds number (Re), and it determines the ratio of the
convection to diffusion. Numerical solutions of Eq. (1) based on iterative solution methods
become increasingly difficult (converge slowly or even diverge) as the ratio of the convection
to diffusion increases [35]. Traditional finite difference discretization schemes such as
the second-order central difference scheme and the first-order upwind scheme have the
drawbacks of either lack of stability (central difference) or lack of accuracy (upwind). There
is considerable interest in developing improved finite difference discretization schemes for
the convection diffusion equations [1, 11, 13, 14]. Recently, the class of higher order compact
discretization schemes with superconvergent properties has attracted much attention and
has been applied to the convection diffusion equations [5, 8, 9, 12, 23, 31].

In the various ways of differencing Eq. (1), the most familiar schemes are the central
difference scheme and the upwind difference scheme. These two schemes yield a linear
system with a five-point sparse matrix of the form

Au= f. (2)

In the case of the central difference scheme, classical iterative methods for solving the
resulting linear system (2) do not converge when the convective terms dominate and when
the cell Reynolds number is greater than a certain constant. Conventional upwind difference
approximation is computationally stable, but is only first-order accurate; and the resulting
solution exhibits the effect of artificial viscosity [18, 21].

For the two-dimensional convection diffusion equation, Guptaet al. [8] proposed a fourth-
order nine-point compact finite difference formula, which was shown to be computationally
efficient and stable, and to yield highly accurate numerical solutions. The resulting linear
system can be solved by classical iterative methods for large values of the Reynolds number
[8]. Zhang [27, 29] and others [7] proposed a few multigrid methods with acceleration
schemes and special intergrid transfer operators to solve the linear systems arising from the
fourth-order compact discretization of Eq. (1) with high Reynolds numbers.

Although considerable amount of work has been done in the past, there is still a lack of a
completely satisfactory computational (discretization and solution) scheme that is suitable
for all types of convection diffusion equations [35]. Most applications of practical interest
require some form of mesh grading or local mesh refinement to deal with locally rapidly
changing solutions [6, 21]. The problem of constructing high-order compact schemes on
nonuniform grids has been raised recently, and a few diffusion dominated boundary layer
problems have been solved to show the effect of using nonuniform grids with the fourth-
order compact scheme [9, 24]. The present work is to employ the ideas of [9, 24] to solve
boundary layer problems with high Reynolds numbers, and to investigate the convergence
behavior of multigrid method for solving the resulting linear system (with grid stretching).

In this paper, we solve Eq. (1) with boundary layers and with Reynolds numbers up to 107

using a fourth-order compact scheme on a graded mesh with a coordinate transformation
technique and a multigrid method. We discuss the fourth-order compact discretization
scheme for transformed convection diffusion equation in Section 2. In Section 3, we briefly
introduce the multigrid method and outline its advantages to solve the relevant sparse
linear systems. Numerical experiments are conducted in Section 4 to show the necessity of
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the graded mesh and a grid transformation for computing high-accuracy solutions. Some
concluding remarks are summarized in Section 5.

2. FOURTH-ORDER COMPACT DIFFERENCE SCHEME

Fourth-order nine-point compact finite difference schemes for Eq. (1) on a rectangular
uniform grid have been designed by several authors [5, 8, 12, 22, 23]. It is believed that
these schemes are mathematically equivalent, although they were derived from different
approaches. We mainly focus on the particular formula given by Guptaet al. [8], since we
will use their technique on a nonuniform grid in the present work [9]. LetÄ be discretized on
a uniform grid in bothx andy dimensions. The approximate value of a functionu(x, y) at a
reference mesh point(x, y) is denoted byu0. The approximate values at its eight immediate
neighboring mesh points are denoted byui , i = 1, 2, . . . ,8. The compact nine grid points
are labeled as follows u6 u2 u5

u3 u0 u1

u7 u4 u8

 .
The compact finite difference formula for the mesh point(x, y) involves the nearest eight
neighboring mesh points with the uniform mesh sizeh. Since we will not use this fourth-
order compact scheme directly on Eq. (1) with boundary layers, for the sake of saving
space, we refer readers to the original paper for the details of the formula and the derivation
procedure [8]. This discretization scheme has been shown to be computationally efficient
and numerically stable with respect to the application of iterative techniques, in addition
to producing high-accuracy approximate solutions for smooth functions [9, 29, 32]. The
unconditional stability of the fourth-order compact scheme makes it very attractive in use
with multigrid method [29]. Since the iterations on all coarse grids converge, they provide
sufficiently accurate corrections to the fine-grid iteration. In other words, there is no cell
Reynolds number effect on the coarse grids [35]. This is an advantage that is not shared by
the central difference scheme.

2.1. Transformed Convection Diffusion Equation

For many convection diffusion problems encountered in practical applications, the com-
putational domain usually contains steep boundary layers in which the solution fluctuates
rapidly. For such problems, the numerical solution from the central difference scheme may
exhibit nonphysical oscillations if the mesh size is not fine enough. Although such oscil-
lations can be suppressed by the use of the upwind difference scheme, the accuracy of the
computed solution from this scheme is reduced to the first order. Very fine discretization has
to be used to yield an approximate solution of acceptable accuracy. Such a fine discretization
results in very large linear systems that demand large computational effort.

It has been shown that the fourth-order compact scheme can suppress the nonphysical
oscillations to a certain degree [35]. For one-dimensional model problems, it can be shown
that the computed solution with the fourth-order compact scheme is nonoscillatory [22].
However, numerical and analytic studies indicate that the order of the computed solution
from the fourth-order compact scheme may be reduced toO(h2)when the Reynolds number
is large [21, 26, 35]. For probems with boundary layers, the accuracy of the computed
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solutions from the three difference schemes mentioned in this paper is undesirable [35].
The advantages of the fourth-order compact scheme may be lost if there are no mesh
points inside the boundary layers. To obtain a high accuracy solution to the boundary layer
problems, suitable techniques must be utilized to place a certain number of mesh points
inside the boundary layers. To avoid too many grid points in the computational domain and to
reduce the total computational cost, the smooth region of the domain should be placed with
relatively few grid points. This leads to the requirement of graded mesh techniques, local
mesh refinement strategies, or grid adaptive algorithms [6, 16, 21]. However, the existing
fourth-order compact scheme and the high-order compact methodology can only work on
a uniform grid.3 A typical solution to such a conflict is to use a coordinate transformation
technique to map a graded mesh to a uniform mesh, so that the fourth-order compact scheme
can be applied on the transformed uniform grid [3]. This is the approach that will be used
in our study. Similar approaches have been used by Guptaet al.[9] and by Spotz and Carey
[24].

Consider a nondegenerate mapx = x(ξ, η), y = y(ξ, η), which transforms Eq. (1) from
a graded mesh on 0< x < 1, 0< y < 1 to a uniform mesh on 0< ξ < 1, 0< η < 1. The
transformed equation can be written as

α(ξ, η)uξξ + β(ξ, η)uηη + c(ξ, η)uξη + λ(ξ, η)uξ + µ(ξ, η)uη = f (ξ, η), (3)

where the coefficients are given by

α(ξ, η) = ξ2
x + ξ2

y , β(ξ, η) = η2
x + η2

y,

λ(ξ, η) = p(ξ, η)ξx + q(ξ, η)ξy + ξxx + ξyy,

µ(ξ, η) = p(ξ, η)ηx + q(ξ, η)ηy + ηxx + ηyy,

c(ξ, η) = 2(ξxηx + ξyηy).

The difference between the transformed Eq. (3) and the original Eq. (1) is the variable
diffusion coefficientsα, β, andc of the second-order derivative terms appearing in the
transformed equation, but not in the original equation. In particular, the second-order cross
derivative termuξη in Eq. (3) may present some problems to the fourth-order compact for-
mulation [24]. Fortunately, for the orthogonal grids used in our current study, the coefficient
c(ξ, η) is identically zero throughoutÄ. Hence, Eq. (3) is simplified as

α(ξ, η)uξξ + β(ξ, η)uηη + λ(ξ, η)uξ + µ(ξ, η)uη = f (ξ, η). (4)

2.2. Fourth-Order Approximation for Transformed Equation

To derive a fourth-order compact finite difference approximation, we assume that the
solutionu(ξ, η) of Eq. (4) satisfies the Taylor series expansion

u(ξ, η) =
∑

ai j ξ
i η j

3 There are some implicit high-order compact schemes that can work on nonuniform grids [19]. These high-order
compact schemes are implicit because they involve discrete values of the first- and second-order derivatives, in
addition to the discrete function values.
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locally on the mesh points with a local center at the reference grid point 0 and the nearest 8
neighboring grid points. The coefficientsα, β, λ, µ, and the forcing functionf are assumed
to have similar Taylor series expansions on the grid points in question. The fourth-order
compact difference scheme can be obtained by substituting the Taylor series expansions
into Eq. (4) and by obtaining the representation foru in Eq. (4) to obtain a finite difference
formula of order 4. This is achieved by truncating the Taylor series up to order 4 (by setting
all the Taylor series coefficients ofui j to zero fori + j > 4). The derivation procedure is
straightforward but tedious. We omit the details and refer interested readers to the original
paper of Guptaet al.[9]. We mention that a different procedure was proposed by Spotz and
Carey in which the property of the mapping function is also considered [24].

The nine-point compact finite difference approximation of Eq. (4) yields at each internal
grid point a linear equation of the form [9]

8∑
j=0

α j u j = 6h2 f00+ h4[ f20+ f02+ T1 f10+ T2 f01], (5)

where the coefficients are given by

α0 = 2R1+ 2R2+ 4S1, α1 = R1+ R3,

α2 = R2+ R4, α3 = R1− R3, α4 = R2− R4,

α5 = S1+ S2+ S3+ S4, α6 = S1+ S2− S3− S4,

α7 = S1− S2+ S3− S4, α8 = S1− S2− S3+ S4,

T1 = (λ00− 2α10)/(2α00), T2 = (µ00− 2β01)/(2β00),

R1 = 5α00− β00+ T1h2(λ00+ α10)+ T2h2α01+ h2(α20+ α02+ λ10),

R2 = 5β00− α00+ T2h2(µ00+ β01)+ T1h2β10+ h2(β20+ β02+ µ01),

R3 = h/2(5λ00− 2β10− 2β00T1)+ h3/2[T1λ10+ T2λ01+ λ20+ λ02],

R4 = h/2(5µ00− 2α10− 2α00T2)+ h3/2[T2µ01+ T1µ10+ µ20+ µ02],

S1 = 1/2(α00+ β00), S2 = h/4[µ00+ 2α01+ 2T2α00],

S3 = h2/4[µ10+ λ01+ T1µ00+ T2λ00], S4 = h/4[λ00+ 2β10+ 2T1β00].

The truncation error of the approximation scheme (5) isO(h4); see [9] for details. Equation
(5) utilizes partial derivatives of the functionsα, β, λ, µ, and f . A double subscript “i j ” on
any of these functions denotes the (i + j )th partial derivative defined by

αi j = 1

i ! j !

∂ i+ jα

∂ξ i ∂η j
.

In this formulation, we require that the partial derivatives in question exist analytically.
It is also possible to approximate these partial derivatives by finite difference formulas.
However, as Spotz and Carey showed in [24], the finite difference approximations for the
partial derivatives must be of fourth-order accuracy in order for the entire approximation
scheme to maintain its fourth-order accuracy.
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3. MULTIGRID METHOD

Multigrid method is among the fastest and most efficient algorithms for solving linear
systems arising from discretized elliptic partial differential equations [2, 25]. The multi-
grid algorithm iterates on a hierarchy of successively coarser grids until the convergence is
reached (the residual equations are approximately solved on the coarse grids); considerable
computational time is saved by doing major computational work on the coarse grids. For
more details on the motivation, philosophy, and processes of multigrid method, readers are
referred to [2, 25] and the references therein. For the specific multigrid methods used to
solve the convection diffusion equation with a fourth-order compact discretization scheme,
see [7, 10, 15, 27, 29, 32]. In general, the standard multigrid method works well with the
fourth-order compact scheme for Re≤ 103. For convection dominated problems, accelera-
tion schemes, such as the minimal residual smoothing technique [28], and special intergrid
transfer operators, have to be employed to achieve reasonable convergence rates.

For convection diffusion equations discretized by the upwind type schemes, some forms
of algebraic multigrid approaches have been shown to be efficient [4, 17, 20]. An ILU
preconditioning technique has also been used to solve the sparse linear systems arising from
discretized convection diffusion equations with the central difference, upwind difference,
and the fourth-order compact schemes [35].

In the present work, we use a standard multigrid approach with an alternating line Gauss–
Seidel relaxation [25]. Smoothing analyses in [32] show that the alternating line Gauss–
Seidel relaxation is a robust smoother for the convection diffusion equation discretized
by the fourth-order compact scheme, although the point Gauss–Seidel relaxation also has
smoothing effect for all Reynolds numbers. One presmoothing and one postsmoothing
sweeps are performed on each level in a V-cycle algorithm. In addition, a standard bilinear
interpolation operator and a full weighting restriction operator are used as the intergrid
transfer operators [25].

4. NUMERICAL RESULTS

Two test problems were solved using the discretization and solution techniques discussed
in previous sections. The first two subsections report the accuracy of the computed solutions
of the fourth-order compact scheme with respect to the grid stretching, assuming that the
linear systems were solved successfully by the multigrid method. The third subsection
discusses the effect of grid stretching on the convergence of the multigrid method.

4.1. Problem 1

We first consider a constant coefficient convection diffusion equation

−ε(uxx + uyy)+ ux = 0 (6)

defined on the unit square 0≤ x ≤ 1, 0≤ y ≤ 1. The boundary condition is prescribed as

u(x, 0) = u(x, 1) = 0; u(0, y) = sinπy; u(1, y) = 2 sinπy.
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FIG. 1. An illustration of the exact solution on original grid with the uniform mesh, the computed solution
on the transformed grid, and the computed solution on the stretched grid for Problem 1 withε = 0.001.

The exact solution is [9]

u(x, y) = exp(x/2ε) sinπy[2 exp(−1/2ε) sinhσ x + sinhσ(1− x)]/sinhσ,

whereσ 2 = π2+ 0.25/ε2.
This problem represents a convection dominated flow and was used as one of the test

problems by Guptaet al. [9], who tested it withε as small as 0.01. The coefficient of the
convective term is a constant. The top picture of Fig. 1 is the exact solution of Eq. (6) with
ε = 0.001 and is shown on a uniform mesh in the original coordinate system. For most part
of the domain, the exact solution exhibits smooth values. But it has a steep boundary layer
of thicknessO(ε) along the downstream edge atx = 1, and has shear layers of thickness
O(
√
ε) along the top and bottom edges aty = 0 andy = 1.

Following Guptaet al. [9], we used the following coordinate transformation to resolve
the boundary layer

x = [1− exp(−Qξ)]/[1− exp(−Q)]. (7)

This transformation maps the interval 0< x < 1 onto 0< ξ < 1; they coordinate direction
is not changed. A uniform mesh inξ translates into a graded mesh inx which is coarser
nearx = 0 and finer nearx = 1 (see the bottom picture of Fig. 1). The parameterQ relates
the coarsest mesh widthD nearx = 0 with the finest mesh widthd nearx = 1. The total
number of mesh points along theξ coordinate direction isQ = ln(γ )/(1−1ξ), where
γ = D/d is the mesh stretching ratio, and1ξ = 1/N (N is the total number of mesh
intervals in theξ coordinate direction). Using the coordinate transformation of Eq. (7), the
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partial differential equation (6) becomes

(
z

Q

)2

uξξ + uyy− z

Q

(
1

ε
− z

)
uξ = 0, (8)

wherez= exp(Qξ)[1− exp(−Q)]. Note that the original Eq. (6) is a constant problem.
But the transformed Eq. (8) is a variable coefficient problem; since the parameterz is now
a function of the independent variableξ .

The fourth-order compact scheme discussed in Section 2 is applied to the transformed
Eq. (8) on a uniform grid of theξ and y variables with a uniform mesh sizeh. The total
number of grid points in each coordinate dimension isN = 1/h+ 1, of which (N − 1)
are internal points with unknown values. At each internal grid point, we have a nine-point
linear equation of the form (5) and all of the(N − 1)2 equations constitute a sparse linear
system of the form (2). This sparse linear system is then solved by a multigrid method. For
the standard (geometric) multigrid method, we actually discretized Eq. (8) on all coarse
meshes (on transformed grids) with a reduction ratio of 2 between the successive meshes,
until the coarsest mesh has only one internal grid point. (This is the standard coarsening
technique used in geometric multigrid method [25]).

We computed the numerical solutions of Eq. (8) for several values of the perturbation
parameterε and the mesh stretching parameterγ . Sample results for 10−7 ≤ ε ≤ 1 are
given in Table I. The errors reported are the maximum absolute error over all of the discrete
grid points. In Table I, the parameterγ controls the amount of grid stretching;γ = 1 implies
no stretching was used. The last column shows the order of accuracy of the discretization
scheme and the data were computed by order= log2(errorh=1/64/errorh=1/128).

TABLE I

Maximum Error in the Computed Solution of Problem 1 with Different Diffusion

Coefficientε, Stretching Ratioγ, and Discretization Parameterh

ε γ \h 1/64 1/128 Order

100 1 3.69(−9) 2.30(−10) 4.00
5 1.36(−7) 8.31(−9) 4.03
1 9.01(−7) 5.62(−8) 4.00

10−1 10 2.50(−7) 1.53(−8) 4.04
20 2.70(−7) 1.67(−8) 4.03

100 7.70(−7) 4.75(−8) 4.02
1 3.44(−3) 2.12(−4) 4.02

10 3.31(−5) 2.12(−6) 3.96
100 2.03(−6) 1.27(−7) 4.00

1 4.68(−1) 2.20(−1) 1.09
10−2 100 3.18(−4) 2.13(−5) 3.90

400 2.20(−5) 1.43(−6) 3.96
10−3 4× 102 2.19(−5) 1.43(−6) 3.94
10−4 104 3.58(−5) 2.09(−6) 4.10
10−5 105 9.20(−5) 5.70(−6) 4.01
10−6 106 1.91(−4) 1.20(−5) 3.99
10−7 9× 107 6.78(−4) 2.36(−5) 4.84
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It can be seen that the fourth-order compact scheme indeed yields solution ofO(h4)

when Eq. (6) does not have a steep boundary layer. Forε = 0.001, even the fine mesh
sizeh = d = 1/128 without stretching (γ = 1) could not resolve the boundary layer. The
boundary layer has a thickness of 0.001, and the mesh sized = 1/128= 0.0078 implies
that there was no grid point placed inside the boundary layer. The computed solution from
the fourth-order compact scheme has an accuracy order of 1.09 (see Table I, row 10 and
column 5). However, when the mesh was stretched, the fourth-order accuracy is recovered
with γ = 100. Within a certain range of grid stretching, the larger the stretching ratioγ , the
more accurate the computed solution. However, too much stretching may have a negative
effect. This is demonstrated by the results in rows 5 and 6 withε = 0.1; the use of the
stretching ratiosγ = 20 andγ = 100 yielded computed solution with a lower accuracy
than that with a stretching ratioγ = 10. This is because, in these cases, the boundary layer
is not too steep. A larger stretching ratio puts too many grid points along the boundary
x = 1 and too few along the boundaryx = 0. Thus, the maximum absolute error was
actually found close to the boundaryx = 0, not close to the boundary layer atx = 1, as
one would expect.

From Table I, we can see that, with a nonuniform grid, a boundary layer problem with
large values of Re (smallε) (as large as 107) can be solved. This table indicates that the
steeper the boundary layer, the larger the stretching ratio is needed. Most importantly, it
shows that the fourth-order accuracy rate is achieved even when the problem is highly
convection dominated. Simply put, the high-order accuracy of the fourth-order compact
scheme is recovered by the use of grid stretching strategy. This result is surprising since
several authors have shown that the fourth-order compact scheme yields computed solution
of second-order accuracy at high Reynolds numbers on uniform grids [21, 26, 35]. Our
numerical results show that the fourth-order compact scheme may still maintain its high
accuracy at high Reynolds numbers on nonuniform grids.

We also show in Fig. 1 the exact solution (ε = 0.001, h = 1/32) on the original grid with
a uniform mesh, the computed solution on the transformed grid, and the computed solution
on the original grid with a stretched mesh. We can see that there is no grid point inside the
boundary layer on the original uniform grid. The middle picture of Fig. 1 gives an impression
that the transformation of the stretched grid to a uniform grid has the effect of smothing the
boundary layer so that a few grid points can be placed into the region nearξ = 1. In fact, the
boundary layer almost disappeared on the transformed grid. It seems that the solution on
the stretched grid is smooth and the fourth-order compact approximation is applicable. The
bottom picture of Fig. 1 shows that with a mesh stretching ratioγ = 103, the grid points
are clustered along the boundary layer atξ = 1. There are a few grid points placed inside
the boundary layer, and the computed solution is shown to be in good agreement with the
exact solution.

Figure 2 plots the solution profiles atξ = 1− h when a different mesh size was used; the
other parameters were set asε = 0.001,γ = 5. The solution accuracy is rapidly improved
with the increase in the number of grid points. Comparison of the computed solutions with
different stretching ratios is given in Fig. 3, where the parameters were set asε = 0.001,
h = 1/64, and the stretching ratios were set at 1, 5, 10, and 100, respectively.4 Once
again, the more severe the grid stretching, the more accurate the computed solution. When

4 The solutions shown in four subfigures of Fig. 2 and in other similar figures are not necessarily the same
solution. They are the solutions relative to the particular values ofh andγ .
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FIG. 2. Comparison of the exact solution and the computed solution of Problem 1 (ε = 0.001) with a stretching
ratio γ = 5 at ξ = 1− h with different mesh size. Solid line is the exact solution, dashed line is the computed
solution.

FIG. 3. Solution profiles of Problem 1 (ε = 0.001) with different stretching ratios atξ = 1− h with h = 1/64.
Solid line is the exact solution, dashed line is the computed solution.
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FIG. 4. Maximum absolute errors of the computed solution of Problem 1 with different stretching ratiosγ

and different mesh sizeh.

γ = 100, we had the most accurate solution. In this case, the computed solution is graphi-
cally indistinguishable with the exact solution.

Figure 4 shows how the location of the maximum absolute errors changes with different
stretching ratios and with different mesh size. Forε = 0.1, we obtained the highest accu-
racy atγ = 5. When the stretching ratio increased, the maximum absolute error increased
because of the dominance of the errors at nearx = 0, which is in agreement with the results
of Table I. For a medium thickness boundary layer withε = 0.01, the maximum absolute
errors keep as a constant. For a much steeper boundary layer, e.g., forε = 0.001, the max-
imum absolute errors keep as a constant after a much larger stretching ratio. Figure 5 is the
error distribution contours in the computational domain. It gives results similar to those in
Table I and in Fig. 4. It is clear that a different stretching ratioγ results in the maximum
absolute error being found at different locations.

4.2. Problem 2

For the second test problem, we chose in Eq. (1) the following convection coefficients

p(x, y) = Rex(x − 1)(1− 2y), q(x, y) = −Re y(y− 1)(1− 2x).

It is obvious that this test problem has a stagnation point at (0.5, 0.5). A stagnation point
(x0, y0) is the one inside the computational domain where both convection coefficients
vanish; i.e.,|p(x0, y0)| + |q(x0, y0)| = 0. Convection diffusion equations with stagnation
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points in their domains are usually used to model recirculation flow problems. For large
Re, this type of problem is very hard to solve, especially when standard multigrid method
is used as the solution technique [29]. The exact solution is chosen similar to the one used
by Spotz and Carey [24] as

u(x, y) = [1− b(x)][1 − b(y)],

where

b(x) = [exp(−Re(x − 1))− 1]/[exp(Re)− 1],

b(y) = [exp(−Re(y− 1))− 1]/[exp(Re)− 1].

The exact solution has steep boundary layers nearx = 0 andy = 0 (see the top picture of
Fig. 6. To solve this problem with the boundary layer, we introduce the mapping functions
[24]

x(ξ) = ξ + γ
π

sinπξ, y(η) = η + γ
π

sinπη,

whereγ is the grading parameter. The mapping function is invertible for|γ | < 1. The ex-
pressionγ > 0 corresponds to a compression (clustering) to the right (x = 1) and similarly
to the left (x = 0) for γ < 0. In the present calculation, we selectγ = 0.0, −0.2, −0.5,

FIG. 5. Absolute error distribution contours of Problem 1 (ε = 0.01) with different stretching ratios and
h = 1/32.
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FIG. 6. An illustration of the exact solution on the original grid with the uniform mesh, the computed solution
on the transformed grid, and the computed solution on the original stretched grid of Problem 2 with Re= 50,
γ = −0.9, h = 1/32.

−0.7,−0.9 to compare the effect of the grid stretching ratio on the accuracy of the com-
puted solution. The test problem was computed on a sequence of uniformly refined grids
with h = 1/16, 1/32, 1/64, 1/128 for several Reynolds numbers Re= 1, 50, 100, 250,
500, 1000. Figure 6 shows the exact solution on the original uniform grid, the computed
solution on the transformed grid, and the computed solution on the original stretched grid,
respectively. The parameters were chosen as Re= 50,γ = −0.9, andh = 1/32. Because
of the high stretching ratio, we obtain a very accurate computed solution (see the bottom
picture of Fig. 6). The comparison of the maximum absolute errors with different mesh size
and several stretching ratios (γ = 0.0,−0.2,−0.5,−0.7,−0.9) are depicted in Fig. 7.

For the computed solution with different stretching ratios, Fig. 7 shows that the maximum
absolute errors decreased rapidly when either the mesh size decreased or the mesh stretching
ratio increased. Such a behavior is what we would normally expect for a good numerical
scheme for solving the convection diffusion equations.

Figure 8 further demonstrates the effect of the grid stretching on the accuracy of the
computed solution. It shows the solution profiles of Problem 2 with Re= 100 atξ = 1− h
with h = 1/32. It can be observed that the difference between the computed solution and the
exact solution was reduced quickly as the amount of the grid stretching was increased. With
a sufficient grid stretching, the computed solution is graphically indistinguishable from the
exact solution.

Our multigrid method did not converge for solving Problem 2 when Re> 1000. This
is a typical large Re problem case with a stagnation point inÄ, which will be discussed
later. However, in order to show that the fourth-order compact scheme can produce accurate
solution for this problem with large Re, we used a preconditioned Krylov subspace method
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FIG. 7. Comparison of the maximum absolute errors of the computed solutions of Problem 2 (Re= 50) with
different mesh sizeh and different stretching ratiosγ .

FIG. 8. Solution profiles of Problem 2 (Re= 100) with different stretching ratios atξ = 1− h with h = 1/32.
Solid line is the exact solution, dashed line is the computed solution.
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TABLE II

Maximum Absolute Errors in the Computed Solution of Problem 2 with Different

Convection Coefficient Re, Stretching Ratioγ, and Discretization Parameterh

Re γ \h 1/128 1/256 Order

100 0.0 7.86(−12) 4.97(−13) 3.98
−0.9 9.09(−9) 5.68(−10) 3.99

101 0.0 5.25(−8) 3.28(−9) 4.00
−0.9 4.88(−8) 3.05(−9) 4.00

102 0.0 9.36(−4) 6.03(−5) 3.96
−0.9 3.38(−7) 2.11(−8) 4.00

103 −0.9 9.64(−4) 6.22(−5) 3.95
−0.99 1.07(−5) 6.55(−7) 4.03

104 −0.99 8.58(−4) 5.16(−5) 4.06
−0.999 7.72(−4) 4.38(−5) 4.14

105 −0.999 5.67(−3) 2.66(−4) 4.41

to solve the linear system [34]. The computed results are listed in Table II, which show that
fourth-order accuracy is achieved for Problem 2 with Re as large as 105, provided sufficient
grid stretching is performed.

4.3. Multigrid Convergence

In this subsection, we demonstrate how the grid stretching affects the convergence of
the multigrid method that we used to solve the resulting sparse linear systems. The multi-
grid iteration was stopped when the finest grid residual in 2-norm was reduced by 1010

orders of magnitude. A total of 40 multigrid iterations were allowed in each test run. We
used some random vectors as the initial guess. A symbol “–” in a table indicates lack of
convergence.

We first tested the multigrid method with an alternating line Gauss–Seidel (ALGS)
smoother for solving Problem 1 withh = 1/64. The number of multigrid iterations with
respect to different diffusion parameterε and different grid stretching ratioγ are listed in
Table III.

TABLE III

Number of Multigrid Iterations with ALGS Relaxation for Problem 1 ( h = 1/64)

with Respect to the Diffusion Parameterε and the Grid Stretching Ratio γ

ε\γ 1.1 10 102 103 104 105 106 107 108

10−6 1 1 1 1 1 3 3 4 5
10−5 1 1 1 1 3 2 5 5 4
10−4 1 1 2 3 2 2 5 4 8
10−3 3 6 8 7 10 8 7 11 —
10−2 5 6 6 8 8 8 9 — —
10−1 6 6 5 6 — 10 13 15 —
100 6 8 7 7 13 6 9 13 13
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Some comments on the results in Table III are helpful.

• The degree of the grid stretching affects the convergence rates of the multigrid itera-
tions. From left columns to right columns, the magnitude of the stretching ratio increased,
and the number of multigrid iterations required to converge increased also. For certain
stretching ratios, the multigrid algorithm did not reach convergence, most likely because
of some data generated by the stretched grids. One possible explanation is that for certain
values ofε andγ , the transformed computational domain contains some stagnation points.
It can be shown that the convection coefficient ofuξ in Eq. (8) vanishes at

ξ = − ln ε(1− exp(−Q))

Q
,

if this quantity falls into the interval (0, 1). This is exactly the case in Table III withε = 0.1
andγ = 104. With h = 1/64, we can see the coefficient ofuξ vanishes atξ ≈ 0.2461.
• The data in the upper left corner of Table III indicate that the multigrid algorithm

converged extremely fast when the problem was convection dominated with very small
values ofε, and when the degree of the grid stretching was not too severe. This phenomenon
is not surprising since in this case, the ALGS smoother was a direct solver [25]. What has
been missing in literature on this topic is that the computed solution has no accuracy because
of the very steep boundary.
• The data in the lower right corner imply that unnecessary grid stretching deteriorated

the convergence rate of the multigrid method.
• The data in the upper left corner show that the number of multigrid iterations increased

as the stretching ratio increased. However, in these cases, the computed solution obviously
has a certain degree of accuracy and the iteration numbers are reasonable.
• The data in the lower left corner represent the cases in which no grid stretching or only

a slight grid stretching were needed. The iteration numbers are reasonable. These cases
represent the classical multigrid method applied to elliptic problems.

The best known property of geometric multigrid method is probably its grid independent
convergence rate when applied to elliptic problems. We also tested the effect of the grid
stretching on the convergence dependence with respect to the grid size. Our test was con-
ducted for Problem 1 withε = 10−3. The results are listed in Table IV. We find that grid
independent convergence rate was achieved when the grid was not stretched. With a grid
stretching, the multigrid convergence rate is dependent on the grid size. However, the very
nature of such a dependence is interesting. With a light stretching, the convergence rate
was higher when the mesh was refined. With a severe stretching, the convergence rate was
deteriorated when the mesh was refined.

TABLE IV

Number of Multigrid Iterations with ALGS Relaxation for Problem 1 ( ε = 10−3)

with Respect to Different Mesh Sizeh and Different Grid Stretching Ratio γ

h\γ 1.1 10 102 103 104 105 106 107 108

1/32 3 4 11 6 7 6 4 6 —
1/64 3 6 8 7 10 8 7 11 —
1/128 3 8 6 11 15 11 9 15 —
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FIG. 9. Number of multigrid iterations for solving Problem 2 with different Reynolds number with respect
to the grid stretching ratioγ .

We also tested our multigrid iteration algorithm for solving Problem 2. Since this problem
has a stagnation point in its domain, we can only obtain multigrid convergence for Re≤
103. For larger Reynolds number cases, special intergrid transfer operators, such as the
scaled residual injection technique, are needed to recover reasonable convergence rate for
a multigrid method [29, 30, 33, 34]. Such topics are beyond the scope of this paper.

Figure 9 shows the effect of the stretching ratio on the convergence rate of the multigrid
iterations for solving Problem 2 with different Reynolds numbers. We note that the multigrid
convergence rate was not affected substantially by the effect of the grid stretching when
Re≤ 100. However, the solid line in Fig. 9 indicates that the grid stretching did affect the
multigrid convergence substantially when Re= 1000. It is interesting to point out that too
much and too little grid stretching made the multigrid algorithm converge slightly faster in
the case of Re= 1000.

5. CONCLUDING REMARKS

We have investigated the use of a multigrid solution technique with a fourth-order nine-
point compact finite difference scheme to solve the two-dimensional convection diffusion
equation with boundary layers. The boundary layers are first resolved by using a nonuni-
formly discretized grid so that a few grid points can be placed into the boundary layers. An
orthogonal coordinate transformation is then employed to transform the nonuniform grid
into a uniform grid, on which the fourth-order compact scheme is applied.

The effect of the stretching ratio on the accuracy of the computed solution is demonstrated
by solving two test problems. The numerical results indicate that a nonuniform grid is
necessary for solving convection diffusion problems with boundary layers. Without a mesh
grading technique, the fourth-order compact scheme is hopeless with respect to a boundary
layer, since there is no grid point inside the boundary layer. However, with a mesh grading
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technique and a suitable coordinate transformation strategy, the high-order accuracy of the
computed solution from the fourth-order compact scheme can be recovered. We have shown
that the fourth-order accuracy can be obtained for certain highly convection dominated
problems with high Reynolds numbers, if a suitable grid stretching is utilized. This result
was not previously known. In fact, the computed solution for Problem 1 is shown to be
fourth-order accurate at very high Reynolds numbers on stretched grids. This is in contrast
with the situation in which a fourth-order compact scheme is used to solve convection
diffusion problems without boundary layers on uniform grids and the computed solution is
not fourth order accurate at high Reynolds numbers [21, 26, 35].

The multigrid method was shown to be very powerful to solve certain discretized bound-
ary layer problems. For the present two test problems, the transformed equations have
variable coefficients, the multigrid method with the alternating line Gauss–Seidel relax-
ation works just fine. However, we did observe the negative effect of the grid stretching on
the convergence rate of the multigrid iterations. We find that, in order to solve a convection
diffusion problem with boundary layers, a reasonable degree of grid stretching is necessary.
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